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Abstract
It is well known that the Curie temperature, and hence the magnetization, in diluted magnetic
semiconductors (DMS) like Ga1−x Mnx As can be controlled by changing the equilibrium
density of holes in the material. Here, we propose that even with a constant hole density, large
changes in the magnetization can be obtained with a relatively small imbalance in the
quasi-Fermi levels for up-spin and down-spin electrons. We show, by coupling the mean field
theory of diluted magnetic semiconductor ferromagnetism with master equations governing the
Mn spin-dynamics, that a mere splitting of the up-spin and down-spin quasi-Fermi levels by
0.1 meV will produce the effect of an external magnetic field as large as 1 T as long as the
alternative relaxation paths for Mn spins (i.e. spin–lattice relaxation) can be neglected. The
physics is similar to the classic Overhauser effect, also called the dynamic nuclear polarization,
with the Mn impurities playing the role of the nucleus. We propose that a lateral spin-valve
structure in an anti-parallel configuration with a DMS as the channel can be used to demonstrate
this effect, as quasi-Fermi level splitting of such magnitude, inside the channel of similar
systems, has already been experimentally demonstrated to produce polarization of paramagnetic
impurity spins.

1. Introduction

Electrically driven magnetization of diluted magnetic semicon-
ductors (DMS) has the potential to open up new avenues on
the map of magneto-electronics and spintronics [1, 2]. In this
regard, electrical manipulation of magnetization has already
been demonstrated [3–9] and theoretically proposed [10, 11].
The Curie temperature, in these methods, was controlled
by changing the carrier concentration (Fermi level) while
keeping the carrier spin-subsystems in an equilibrium among
themselves, that is, keeping the quasi-Fermi levels for up-spin
(μ↑) and down-spin (μ↓) carriers equal. In contrast, in this
work we propose that even with a constant carrier density,
large changes in the magnetization can be obtained with a
relatively small imbalance in the spin population, that is, a
small difference in μ↑ and μ↓. We also propose a structure
(figure 1(a)) for demonstrating the effect that is within current
experimental capabilities. In essence, our proposed scheme is
similar to the optical manipulation of magnetization in [7, 12],

where an imbalance in the spin population is attained by using
circularly polarized light.

Our proposed effect represents a non-equilibrium mag-
netization resulting from a non-equilibrium bath (the carrier
spins) constantly trying to restore equilibrium via spin-flip
processes due to exchange interaction with localized spins
which get polarized in the process. Indeed the physics is
similar to the classic Overhauser effect, also called dynamic
nuclear polarization (DNP) [13], with the Mn impurities
playing the role of the nucleus. To our knowledge this
effect has not been employed to actuate non-equilibrium
magnetization by electrical excitation although magnetization
by optical excitation via, possibly, the same effect [7, 12]
and demagnetization via the opposite effect [14] have been
experimentally observed. Our proposed effect involves
electrically driven dynamic polarization of interacting spins
(where the polarization of a particular localized spin is affected
by the polarization of the neighboring localized spins) and,
hence, would be an extension of a similar effect studied in
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Figure 1. (a) Schematic structure: a dilute magnetic semiconductor
(DMS) Ga1−x Mnx As connected through nonmagnetic (NM) spacers
to two ferromagnetic (FM) contact in an anti-parallel (AP) spin-valve
configuration. Under bias V , an electronic current I , injecting
spin-polarized carriers (holes), flows. (b) Mn magnetization M ,
scaled by Mn saturation magnetization M0, versus temperature T ,
scaled by the Curie temperature Tc, of the channel in (a) for different
quasi-Fermi level splitting μ↑ − μ↓ (μ↑(↓) being the channel
quasi-Fermi level for up(down)-spin carriers) with external magnetic
field Bext = 0; inset: under different Bext at equilibrium
(μ↑ − μ↓ = 0). (c) Hole magnetization m, scaled by saturation hole
magnetization m0, versus temperature T , scaled by the Curie
temperature Tc, of the channel in (a): under the same conditions as in
(b); inset: under the same conditions as in inset of (b). The parameter
values for these calculations are: nMn ∼ 5.0 × 1020 cm−3,
nh/nMn = 0.08, m∗ = 0.5me, a0 = 5.65 Å, and J = 1 eV.

(This figure is in colour only in the electronic version)

the context of non-interacting spins [15–17]. Due to this
effect a splitting of the up-spin and down-spin quasi-Fermi
levels in the channel (figure 1(a)) by 0.1 meV can have the

same effect as an external magnetic field of 1 T (figure 1(b)).
Splitting of this order can be attained by spin-injection into
semiconductors [18] and has recently been demonstrated in an
n-channel GaAs lateral spin-valve operated with anti-parallel
contacts to actuate dynamic polarization of non-interacting
spin [19, 20]. A similar p-channel Ga1−x MnxAs (x ∼ 0.05)
structure should be suitable for the demonstration of the
proposed effect.

2. Model overview

A number of theoretical papers [21–27] have modeled the
appearance of ferromagnetic ordering among the Mn ions
in Ga1−x MnxAs, interacting via the itinerant holes, in terms
of a mean field description and explain the experimentally
observed [28, 29] temperature variation of magnetization in
these materials. We adopt exactly the same model as [26]
and have modified it to take into account the non-equilibrium
aspect by: (i) introducing two different quasi-Fermi levels for
up-spin and down-spin holes (μ↑ and μ↓ respectively) inside
the channel, and (ii) writing a master equation to describe
the non-equilibrium dynamics of the Mn spins that was
used in [20] to semi-quantitatively explain the experimental
observation of Mn spin-dynamics in [19]. In essence, our
model is the same as that in [14, 30], which also studies the
magnetization dynamics of DMS and uses a more sophisticated
valence band description.

With μ↑ − μ↓ = 0 we get essentially the same results
as [26] (solid curves in figures 1(b) and (c)). Under the non-
equilibrium situation (μ↑ − μ↓ �= 0), according to our model,
we expect to see a strong ferromagnetic ordering among the
Mn ions (figure 1) for moderate values of μ↑ − μ↓ due to
reasons that we will discuss later in this paper. A moderate
magnitude of μ↑ − μ↓ ∼ 0.1 meV is quite feasible inside the
channel of an anti-parallel lateral spin-valve structure [19, 20]
and can be understood in terms of a circuit model presented
in [19] to explain the experiment therein. We use the same
model later in the paper to estimate μ↑ − μ↓.

3. Theory

The spontaneous ferromagnetic ordering of the localized Mn
spins in a DMS material arises due to the hole mediated
exchange interaction between them. In the context of mean
field theory of DMS [26], the carriers ‘feel’ an exchange field
due to the polarized Mn spins in addition to any external
magnetic field Bext, which separates the up-spin band from the
down-spin band (figure 2(a)) in energy by

� = �(ex) + ghμB Bext �(ex) = Ja3
0nMn〈SMn

z 〉 (1)

where a0 is the lattice constant, gh is the g-factor of the
carrier (hole), μB is the Bohr magneton, �(ex) is the separation
between up-spin band and down-spin band due to exchange
field and 〈SMn

z 〉 is the average z-component of S = 5/2 Mn
spins:

〈SMn
z 〉 =

∑

s

s Fs (2)

2
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Figure 2. (a) Schematic carrier (hole) bands of the channel in
figure 1(a) for different spins: Ev↑(↓), μ↑(↓) and � being the valence
band edges for up(down)-spin holes, their quasi-Fermi levels and
their band splitting respectively. (b) Energy levels and relaxation of
Mn spins inside the channel in figure 1(a): SMn

z denotes the six spin
states of the S = 5/2 Mn spins, ε denotes their energy difference,
�↑↓(↓↑) denotes the rate of transition from lower (higher)
z-component state to a higher (lower) z-component state and,
n = −5/2, −3/2, . . ., 3/2.

Fs being the probability of a Mn spin being in the SMn
z = s

state (s = 5/2, 3/2, . . ., −5/2).
The carrier band splitting in addition to splitting of quasi-

Fermi levels for different carrier spins (figure 2(a)) leads to
a non-zero average z-component of hole-spin 〈Sh

z 〉 due to
unequal carrier concentrations for up-spin (nh,↑) and down-
spin (nh,↓), which are given by:

〈Sh
z 〉 = 1

2

nh,↑ − nh,↓
nh,↑ + nh,↓

(3)

nh,↑(↓) =
∫

dE (1 − f↑(↓)(E))D↑(↓)(E) (4)

where f↑(↓)(E) is the Fermi function with Fermi level
μ↑(↓) and temperature T : f↑(↓)(E) = [1 + exp{(E −
μ↑(↓))/kBT }]−1, and D↑(↓) is the three-dimensional density
of states for up(down)-spin carriers calculated assuming a
parabolic band with an effective mass of m∗ and a band-
edge at Ev↑(↓) (figure 2(a)). Ev↑, Ev↓ and � are related by
Ev↓ − Ev↑ = � and the charge neutrality condition: nh =
nh,↑ + nh,↓.

The Mn spins on the other hand feel an exchange
field due to the spin-polarized carriers in addition to any
external magnetic field, which leads to energy level splitting
(figure 2(b)),

ε = ε(ex) + gMnμB Bext

ε(ex) = Ja3
0nh〈Sh

z 〉
(5)

(a new variable ε(ex) appears in the above equation) where gMn

is the g-factor of Mn spins and ε(ex) is the splitting of Mn spin
levels due to the exchange field.

Up to this point, all the equations and quantities, except
different quasi-Fermi levels μ↑ and μ↓, are essentially the
same as [26] and take into account the non-equilibrium effects
of Mn spin-polarization on the holes. To consider the non-
equilibrium effects of the holes on the Mn spins and the
resulting non-equilibrium dynamics, we solve the dynamic rate

equation, which was also used in [20, 30], for the occupation
probabilities Fs :

d

dt

⎡
⎢⎢⎢⎢⎢⎣

F−5/2

F−3/2

F−1/2

F+1/2

F+3/2

F+5/2

⎤
⎥⎥⎥⎥⎥⎦

= Γ

⎡
⎢⎢⎢⎢⎢⎣

F−5/2

F−3/2

F−1/2

F+1/2

F+3/2

F+5/2

⎤
⎥⎥⎥⎥⎥⎦

(6)

at steady state (by setting dFs/dt = 0) under the normalization
constraint:

∑
s Fs = 1 where,

Γ =

⎡

⎢⎢⎢⎢⎢⎣

−�↑↓ �↓↑ 0
�↑↓ −(�↑↓ + �↓↑) �↓↑

0 �↑↓ −(�↑↓ + �↓↑)

0 0 �↑↓
0 0 0
0 0 0

0 0 0
0 0 0

�↓↑ 0 0
−(�↑↓ + �↓↑) �↓↑ 0

�↑↓ −(�↑↓ + �↓↑) �↓↑
0 �↑↓ −�↓↑

⎤

⎥⎥⎥⎥⎥⎦

(7)

�↑↓ and �↓↑ (figure 2(b)), as valence band holes surrounding
the Mn spins act as their spin-bath and also as Mn spins have
negligible spin–lattice relaxation rate in comparison [14], are
given by:

�↑↓ = 2π

h
J 2

∫
dE D↓(E + ε)(1 − f↓(E + ε))D↑(E) f↑(E)

(8a)

�↓↑ = 2π

h
J 2

∫
dE D↑(E)(1 − f↑(E))D↓(E + ε) f↓(E + ε).

(8b)

4. Results: non-equilibrium magnetization

The equations (3), (5), (6), (2) and (1), are solved sequentially
and self-consistently (figure 3) to calculate the Mn spin
polarization and hole polarization in figures 1(b) and (c)
respectively. Magnetization of the Mn and holes inside
channel material (Ga1−x Mnx As) is then calculated from:
M = 2M0〈SMn

z 〉/5 and m = 2m0〈Sh
z 〉 respectively,

where the corresponding saturation magnetizations, M0 =
5gMnμBnMn/2 and m0 = ghμBnh/2. The iterative loop in
figure 3 embodies a positive feedback loop that gives rise
to equilibrium magnetization below the Curie temperature in
such materials. Such positive feedback in combination with
the Overhauser effect (figure 3) is what gives rise to non-
equilibrium magnetization even above the Curie temperature.
The results of the calculations, shown in figures 1(b) and (c),
use realistic parameter values [26] and give equilibrium
magnetization characteristics (calculated by setting μ↑ −μ↓ =
0) similar to experimental observations [28, 29]. Two sets
of calculations were performed: (1) calculations for different
values of μ↑−μ↓ by setting Bext = 0, whose results are shown
in the main plots of figures 1(b) and (c), and (2) calculations for

3
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Figure 3. Non-equilibrium magnetization arises from an interplay of
dynamic spin-polarization (Overhauser effect) that is driven by the
quasi-Fermi level splitting μ↑ − μ↓ between up-spin and down-spin
holes and a positive feedback that is responsible for equilibrium
magnetization below the Curie temperature.

different values of Bext by setting μ↑ − μ↓ = 0 (equilibrium),
whose results are shown in the inset plots of figures 1(b)
and (c). By comparing the main plots in figures 1(b) and (c)
with their corresponding inset plots, we observe that the values
of μ↑ − μ↓ corresponding to the curves in the main plots
maintain a proportionality relation with the values of Bext

corresponding to the similar curves in the corresponding inset
plots (0.1 meV:1.0 meV:10.0 meV = 1 T:10 T:100 T). Such
a proportionality relation is, by no means, a coincidence and
is maintained in the calculations done with different values of
J , nMn, and nh (results not shown in this paper). Although the
Curie temperature, the saturation magnetization and the shapes
of the magnetization versus temperature curves are different for
different values of J , nMn, and nh due to the dependence of the
exchange field on these parameters (equations (1) and (5)) the
strength of the effect remains the same, i.e. the magnetizations
for a quasi-Fermi level splitting of 0.1 meV without any
external magnetic field, when alternative Mn spin relaxation
paths can be neglected, is equal to the magnetizations for an
external magnetic field of 1 T at equilibrium. As a result,
changing J , nMn, and nh by changing the doping, changing
the Mn mole fraction, introducing disorder [31] or by using
a different DMS material (that has itinerant carrier mediated
exchange interaction of localized spins) will not play any
significant role as far as the strength of the effect is concerned,
for reasons to be discussed in the next section.

5. Discussion

The results in figures 1(b) and (c) can be anticipated if the effect
of μ↑ −μ↓ is considered as an effective external magnetic field

as far as the hole spin-polarization and Mn spin-polarization
are concerned. We can show that the functional dependence
of 〈Sh

z 〉 on � and μ↑ − μ↓ obeys the following relation (see
appendix A):

〈Sh
z 〉(�,μ↑ − μ↓) = 〈Sh

z 〉(� + μ↑ − μ↓, 0). (9)

The first term is the hole spin-polarization for a valence
band splitting of � and a non-zero quasi-Fermi level splitting
μ↑ − μ↓, while the second term corresponds to the hole spin-
polarization for an additional valence band splitting of μ↑−μ↓
over the original value � and a zero quasi-Fermi level splitting
(equilibrium). At this point, one can observe that the results in
the main plot (i.e. for Bext = 0) and the inset plot (i.e. for
μ↑ − μ↓ = 0) of figure 1(c) (i.e. hole spin-polarization)
correspond to 〈Sh

z 〉(�(ex), μ↑−μ↓) i.e. 〈Sh
z 〉(�(ex)+μ↑−μ↓, 0)

(equation (9)) and 〈Sh
z 〉(�(ex) + ghμB Bext, 0) respectively. The

mathematical equivalence of the last two expressions suggests
that, as far as hole spin-polarization is concerned, μ↑ −μ↓ has
the equivalent effect of an effective external magnetic field of
Bh

ext = (μ↑ − μ↓)/(ghμB). On the other hand, for Mn spins it
can also be shown that the functional dependence of 〈SMn

z 〉 on
ε and μ↑ − μ↓ obeys the following relation (see appendix B):

〈SMn
z 〉(ε, μ↑ − μ↓) = 〈SMn

z 〉(ε + μ↑ − μ↓, 0). (10)

In this case, the first term is the Mn spin-polarization for an
energy level splitting of ε and a non-zero quasi-Fermi level
splitting of μ↑ − μ↓, while the second term corresponds to the
Mn spin-polarization for an additional energy level splitting
of μ↑ − μ↓ over the original value ε and a zero quasi-
Fermi level splitting (equilibrium). At this point, one can
observe that the results in the main plot (i.e. for Bext = 0)
and the inset plot (i.e. for μ↑ − μ↓ = 0) of figure 1(b)
(i.e. Mn spin-polarization) correspond to 〈SMn

z 〉(ε(ex), μ↑−μ↓)
i.e. 〈SMn

z 〉(ε(ex) +μ↑−μ↓, 0) (equation (10)) and 〈SMn
z 〉(ε(ex) +

ghμB Bext, 0) respectively. The mathematical equivalence of
the last two expressions shows that, as far as Mn spin-
polarization is concerned, μ↑ − μ↓ has the equivalent effect
as an effective external magnetic field of BMn

ext = (μ↑ −
μ↓)/(gMnμB) acting on the Mn spins at equilibrium. For
gh ∼ gMn ∼ 2 the equivalent external magnetic fields for hole
spins and Mn spins (Bh

ext and BMn
ext ), that are mentioned above,

would be equal and be given by

Beff
ext ≈ μ↑ − μ↓

2μB
. (11)

Herein lies the strength of the effect: a mere difference of
0.1 meV between μ↑ and μ↓ is strong enough to produce
the effect corresponding to that of an external magnetic field
as large as 1 T. One can notice that the arguments presented
above do not depend on J , nMn or nh and require that the
alternative relaxation paths for the Mn spins can be neglected
(which entered through the neglect of spin–lattice relaxation
rate while writing down the equations (8) and was subsequently
used in the derivation of equation (10)). As a result, the
strength of the effect (equation (11)) is insensitive to a change
in J , nMn, and nh, and, hence, is relatively insensitive to our
choice of mean field (equations (1) and (5)), as long as the

4
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alternative relaxation paths for the Mn spins can be neglected.
Since (1) our central result (equation (11)), originating
from non-equilibrium magnetization dynamics, is relatively
insensitive to our choice of mean field (equations (1) and (5)),
(2) equations (1) and (5) describe the equilibrium temperature
dependence of magnetization, at least, qualitatively [26],
and (3) a model [30], which essentially uses our choice
of mean field, has been used to successfully explain recent
experiments [14] on non-equilibrium magnetization dynamics,
we feel justified in leaving it to future work to assess the need
for improving equations (1) and (5).

Experimental realization of quasi-Fermi level splitting,
similar to the values mentioned above, has already been
demonstrated to drive dynamic polarization of non-interacting
spins [19, 20] with a structure similar to the one shown in
figure 1(a). One can quite legitimately envision that with
further improvement of the spin-injection process in terms of
contact polarization Pc and contact conductance and, hence,
the parallel terminal conductance G‖, one can achieve even
higher μ↑ − μ↓, leading to a higher degree of ferromagnetic
ordering that would otherwise require immensely large
magnetic fields (figure 1). The material property of the DMS
that acts against attaining quasi-Fermi level splitting between
up-spin and down-spin holes is the spin lifetime of the valence
band holes τso independent of Mn that give rise to the spin-flip
conductance gso. The effect of all these ingredients of a spin-
valve structure on μ↑ − μ↓ can be concisely pictured in terms
of the circuit model in figure 4(a), which we have adopted
from [19] and is valid for a channel length in figure 1(a)
that is smaller than the spin-diffusion length. Since the spin-
diffusion length of magnetic semiconductors has not, to the
best of our knowledge, been reported in the literature, we are
unable to conclusively comment, as far as the channel length
is concerned, on the scope of the analysis to follow, and will
limit our analysis to the thinnest possible (2D) channel having
a thickness of atomic dimensions in the transport direction.
Nevertheless, it will touch upon some key ingredients that
affect μ↑ − μ↓. Moreover, the derivation of equations (9)
and (10) do not rely on the shape of the density of states as
long as the density of states for both up-spin and down-spin
carriers have the same energy dependence (so that one can
write: D↑(E) = D↓(E +�)). As a result, as far as the strength
of the effect is concerned, whether the channel is 2D or 3D does
not play any significant role.

Upon simplification of that circuit model, as shown in
figure 4(b), we get: μ↑ − μ↓ = qV Pc(1 + gso

G‖
)−1, where

V is the applied bias and q is the electronic charge. We
estimate gso ∼ 1010 �−1 m−2 for Ga1−x MnxAs from the
relation gso = q2

h D h̄
τso

, using τso = 1 ps (spin life-time of
GaAs valence band holes [32]) and a 2D density of states
value D ∼ 1037 J−1 m−2 (estimated using the valence band
effective mass used in figure 1(b), which is of the same order
of magnitude as the number calculated from the 3D density of
states for a thickness of atomic dimensions (∼1 nm)). For such
a value of gso, if we use the terminal conductance and contact
polarization values of [19, 20] (G‖ ∼ 107 �−1 m−2, Pc ∼ 0.5),
we estimate μ↑ − μ↓ ∼ 1 meV for an applied voltage of
V = 1 V. However, for τso = 10 fs (the value used in [14])

Figure 4. (a) Circuit model of the structure in figure 1(a) (adopted
from [19]): gso, G↑(↓),1, G↑(↓),2, gα and, gβ are the carrier spin-flip
conductance independent of Mn spins, contact 1 conductance for
up(down)-spin, contact 2 conductance for up(down)-spin, majority
spin conductance and, minority spin conductance respectively.
(b) Simplified circuit diagram of the model circuit in (a): G‖ and
Pc = (gα − gβ)/(gα + gβ) are the terminal conductance for the
parallel (P) configuration and the contact polarization respectively.

one would have to increase G‖ to ∼109 �−1 m−2 (similar to
the values in [33]) to get the same effect.

6. Summary

In summary, we have proposed a novel mechanism for
attaining and controlling ferromagnetic ordering in DMS
materials. We argue that the non-equilibrium accumulation of
carrier spins drives the spin alignment of magnetic impurities
in DMS via the exchange interaction which is responsible for
the origin of the ferromagnetism in such materials in the first
place. We find the effect to be quite strong when we consider
that such a degree of ferromagnetic ordering would otherwise
have to be attained by applying a very large magnetic field
and, also, that this strength is insensitive to a change in several
crucial parameters (magnetically active Mn concentration, hole
concentration, and strength of exchange interaction between
Mn spins and valence band holes) that describe the equilibrium
ferromagnetism of such systems. We believe that, with the
existing experimental sophistication achieved over the years,
our proposed scheme could be realized in the near future and
will usher in a new paradigm in the experimental investigation
of ferromagnetic phase transition and also in applications
benefitting from the strong control of magnetism, for example
magnetocaloric applications [34].
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Appendix A. Derivation of equation (9)

Starting from equations (3) and (4) we get

〈Sh
z 〉(�,μ↑ − μ↓) = 1

2nh

[∫
dE {D↑(E) − D↓(E)}

−
∫

dE { f↑(E)D↑(E) − f↓(E)D↓(E)}
]

(A.1)

5
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where nh was assumed to remain constant (varying with neither
� nor μ↑ − μ↓) on the ground of charge neutrality. Now, for
a given valence band splitting � and a given quasi-Fermi level
splitting δμ ≡ μ↑ − μ↓ (figure 2) we can write

D↑(E) = D↓(E + �) ≡ D(E) (A.2)

f↑(E) = f↓(E − δμ) ≡ f (E). (A.3)

Substituting the above results into equation (A.1)

〈Sh
z 〉(�,μ↑ − μ↓) = 1

2nh

[∫
dE {D(E) − D(E − �)}

−
∫

dE { f (E)D(E) − f (E + δμ)D(E − �)}
]
. (A.4)

The part
∫

dE {D(E) − D(E − �)}=
∫

dE D(E) −
∫

dE D(E − �)

=
∫

dE D(E) −
∫

dE ′D(E ′)

by performing a change of variable on the second integration
in the previous step. It, finally, leads to

∫
dE{D(E) − D(E − �)} = 0.

Substituting the above result in equation (A.4) we get

〈Sh
z 〉(�,μ↑ − μ↓) = 1

2nh

∫
dE { f (E)D(E)

− f (E + δμ)D(E − �)}. (A.5)

Proceeding further,

〈Sh
z 〉(�,μ↑ − μ↓) = 1

2nh

{∫
dE f (E)D(E)

−
∫

dE f (E +δμ)D(E −�)

}
= 1

2nh

{∫
dE f (E)D(E)

−
∫

dE ′ f (E ′)D(E ′ − � − δμ)

}

by performing a change of variable on the second integration
in the previous step. Finally, it leads to

〈Sh
z 〉(�,μ↑ − μ↓) = 1

2nh

∫
{ dE f (E)D(E)

− f (E)D(E − � − δμ)} (A.6)

while substituting μ↑ − μ↓ ≡ δμ = 0 and � = �′ + δμ in
equation (A.5) we find

〈Sh
z 〉(�′ + δμ, 0) = 1

2nh

∫
dE { f (E)D(E)

− f (E)D(E − �′ − δμ)} (A.7)

which, trivially, leads to

〈Sh
z 〉(� + μ↑ − μ↓, 0) = 1

2nh

∫
dE { f (E)D(E)

− f (E)D(E − � − δμ)}. (A.8)

The right-hand sides of equations (A.6) and (A.8) being equal,
we equate their left-hand sides and arrive at the results in
equation (9).

Appendix B. Derivation of equation (10)

Starting from equations (6) and (7), at steady state, we get

F−5/2

F−3/2
= F−3/2

F−1/2
= · · · = F+3/2

F+5/2
= α (B.1)

where we have defined

α ≡ �↓↑
�↑↓

. (B.2)

From equation (B.1) and probability conservation:
∑

s Fs = 1
we get

F−5/2

α5
= F−3/2

α4
= · · · = F+5/2 = 1 − α

1 − α6
. (B.3)

Substituting the above results in equation (2) we find

〈SMn
z 〉 = (1 − α)2

2(1 − α6)
(5α4 + 8α3 + 9α2 + 8α + 5) (B.4)

which shows that 〈SMn
z 〉 at steady state is solely a function of α.

Now, from equations (8), (A.2), (A.3) and (B.2)

α =
∫

dE D(E){1 − f (E)}D(E + ε − �) f (E + ε + δμ)∫
dE D(E + ε − �){1 − f (E + ε + δμ)}D(E) f (E)

.

(B.5)
For a given value of E the ratio of the integrands in the above
equation

D(E){1 − f (E)}D(E + ε − �) f (E + ε + δμ)

D(E + ε − �){1 − f (E + ε + δμ)}D(E) f (E)

=
{

1 − f (E)

f (E)

}{
1 − f (E + ε + δμ)

f (E + ε + δμ)

}−1

= exp

{
−ε + δμ

kBT

}
.

Using the above result while treating the integrations in
equation (B.5) as summation over energy and making use of
the identity

N1

D1
= N2

D2
= · · · = Ni

Di
= · · · =

∑
i Ni∑
i Di

we finally get

α(ε, μ↑ − μ↓) = exp

{
−ε + μ↑ − μ↓

kBT

}
.

From the above relation it trivially follows that

α(ε, μ↑ − μ↓) = α(ε + μ↑ − μ↓, 0). (B.6)

From the above relation and the relation in equation (B.4)
(which shows that 〈SMn

z 〉 at steady state is solely a function
of α) we arrive at the result in equation (10).
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